Welcome to my homepage!

I am currently a Gordon and Betty Moore postdoctoral research fellow at the Physics Department, University of California (Berkeley). I study the dynamics of many-body quantum and classical systems away from equilibrium. My research focusses on Condensed Matter Physics, Ultracold Atoms, Statistical Mechanics, and the interplay between Machine Learning and Physics.

You can learn more about me and my research on this website.

Reinforcement Learning to Control the Kapitza Oscillator

Aug 24, 2018

A Reinforcement Learning agent figures out how to Control Floquet-Engineered Quantum States in a numerical simulation of a quantum experiment. The ability of RL to control systems far away from equilibrium is demonstrated by steering the quantum Kapitza oscillator into the stabilized inverted position in the presence of a strong periodic drive.

Parametric Instabilities in Periodically Driven Bosonic Systems

Aug 15, 2018

Floquet engineering is an established technique from the quantum simulation toolbox, with the present bottleneck set by unwanted heating. We study the occurrence of Parametric Instabilities in Weakly-Interacting Bosonic Optical Lattices, and showcase the detrimental effects caused by transverse degrees of freedom and weak harmonic traps.

A High-Bias, Low-Variance Introduction to Machine Learning for Physicists

Apr 20, 2018

A comprehensive Review Paper on Deep Learning techniques and concepts useful in physics: “A High-Bias, Low-Variance Introduction to Machine Learning for Physicists”.

Phase Transitions of Quantum Control

Aug 20, 2017

Control problems are optimisation tasks with the objective to find the most efficient solution satisfying given constraints. We demonstrated that the difficulty of finding the optimal solution can change abruptly, resulting in the appearance of Control Phase Transitions in the optimisation landscape.

Reinforcement Learning Quantum State Preparation

Apr 1, 2017

A Reinforcement Learning agent learns to Prepare Quantum States in a non-integrable Ising chain. With no prior knowledge about the quantum system, the agent learns to extract the essential features of the optimal preparation protocol.

Periodically Driven Systems

Jan 22, 2017

Recent surge of activity in Periodically Driven many-body Systems has spawned a new branch of quantum physics, known as Floquet engineering: the synthetic generation of novel Hamiltonians, otherwise inaccessible in static condensed matter systems.


Sep 1, 2016

The ability to simulate quantum systems offers invaluable opportunities for building up intuition and understanding about the bizzare world of quantum mechanics. We developed QuSpin – an open source Python package for exact diagonalisation and dynamics of quantum many-body systems.